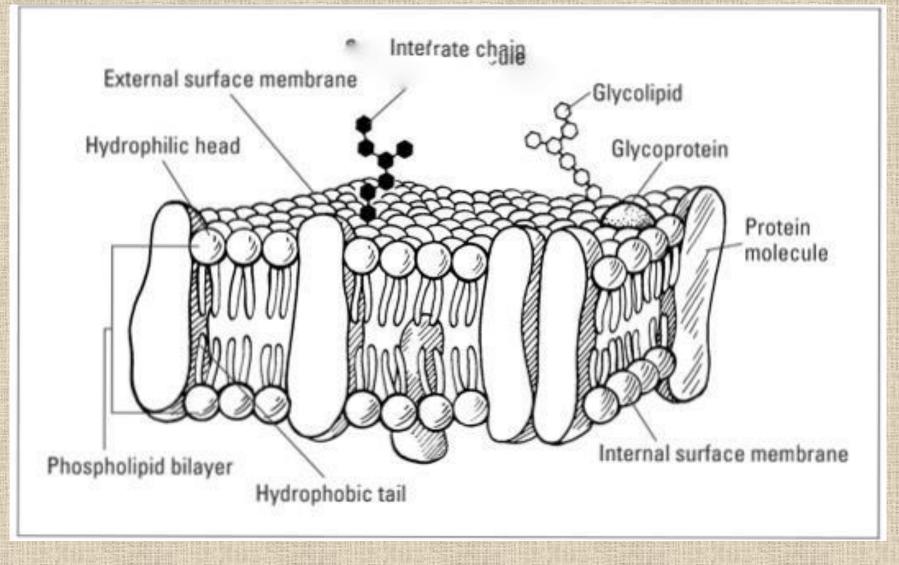
Functional and metabolic evolution of fish

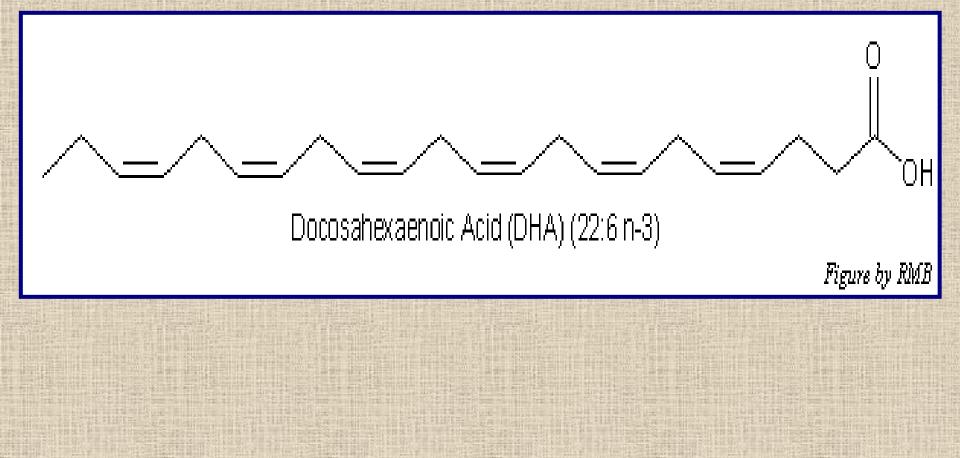
(on example of fatty acid content adaptation in populations of different species)

G.E. Shulman and T.V. Yuneva (Institute of Biology of the Southern seas, Sevastopol)

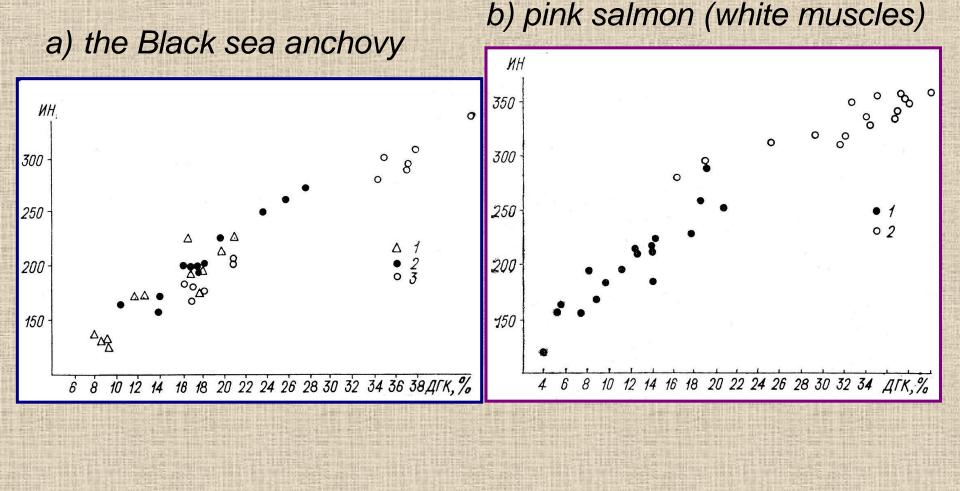
Scheme of biological progress and biodiversity (after Severtsev, 1934)


l	II
Expansion	Specialization
Development of enormous areas	Occupation of narrow ecological niches
High biomass and productivity	
High inter- and intra- species differentiation	High inter- and intra- species differentiation

Rate of oxygen consumption by different Black Sea fish, ml g¹h¹

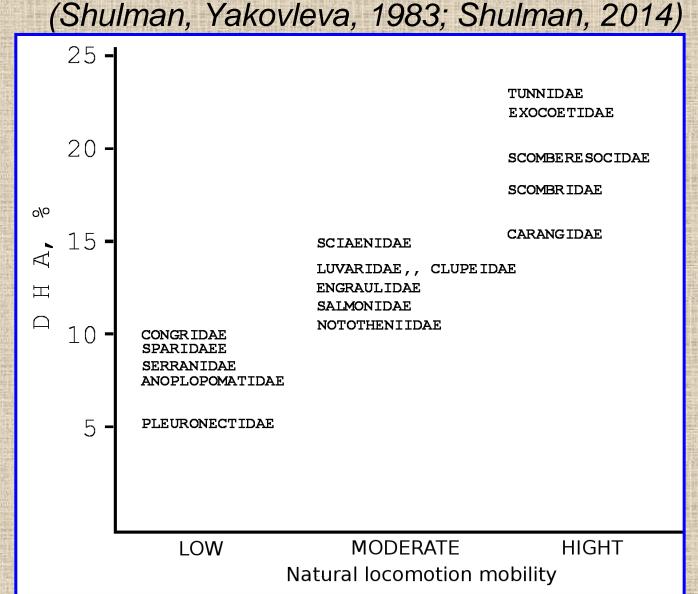

(after Belokopytin, 1993; Shulman and Love, 1999)

Species	Standard metabolism
Anchovy Engraulis encrasicolus ponticus	0.970
Horse-mackerel <i>Trachurus mediterraneus ponticus</i>	0.700
Mullet <i>Mugil cephalus</i>	0.572.
Pickerel Spicara smaris	0.572
Red mullet Mullus barbatus	0.247
Whiting Merlangus merlangus euxinus	0.276
Scorpion fish Scorpaena porcus	0.084


Membrane Structure

Chemical structure of docosahexaenoic acid, or DHA (22:6n-3)

Unsaturation Index and 22:6n-3 content in fish (Shulman, Yuneva, 1990)



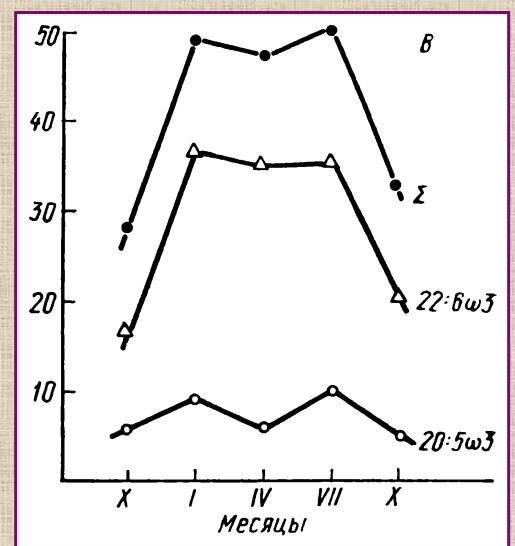
Seasonal variation in the principal fatty acids (%) in the muscle of capelin *Mallotus villosus*

(Henderson et al., 1984)

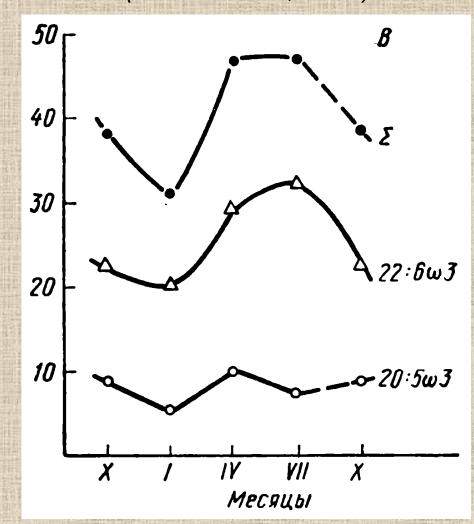
Fatty acid	January	August	January	August
14:0	4.8	5.9	3.8	7.6
16:0	22.1	25.1	19.3	23.0
16:1	8.5	8.3	6.9	7.8
18:0	1.8	1.2	1.4	1.1
18:1	26.0	28.0	20.8	22.4
18:2	1.4	1.8	1.4	1.7
18:4	1.4	4.6	1.5	4.2
20:1	2.3	1.3	4.1	4.4
22:5	13.8	10.8	16.8	10.7
22:1	2.0	1.0	3.8	4.4
22:6	11.3	6.7	15.4	8.3

Relationship between large taxons of marine fishes and C22:6 n– 3 content in their lipids

The same in freshwater fishes (Shulman, Yakovleva, 1983)

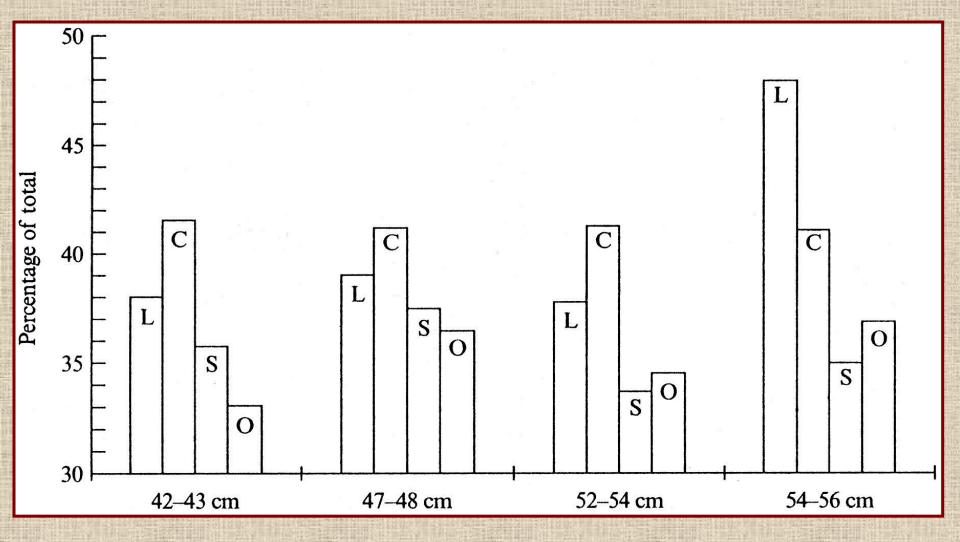


The same in marine invertabrates


Animal	Species	22:6w3, %	Authors
Molluscs	р	с.	
Squids	Sthenoteuthis pteropus	44.0	Yuneva et al., 1994
	Illex illecebrosus	40.7	Jangaard and Ackman, 1965
Cuttlefish	Heteroteuthis dispar	32.0	Culkin and Morris, 1970
Octopus	Eledonela pygmaea	22.8	Culkin and Morris, 1970
Pecten	Pecten maximus	8.4	Ackman, 1982
Mussel	Mytilus edulis	3.2	Ackman, 1982
Oyster	Ostrea edulis	2.3	Ackman, 1982
Crustacean			8
Copepoda	Calanus euxinus	39.8	Yuneva et al., 1998
Euphausida	Stylocheiron abbreviatum	29.2	Yuneva et al., 1992
Fishes			
Anchovy	Engraulis encrasicolus	34.6	Yuneva, 1990
Horse mackerel	Trachurus mediterraneus ponticus	40.0	Yuneva et al., 1991

Dynamics of DNA, EPA and total polyunsaturated fatty acids (∑PUFA) in phospholipids of the Black sea anchovy during annual cycle

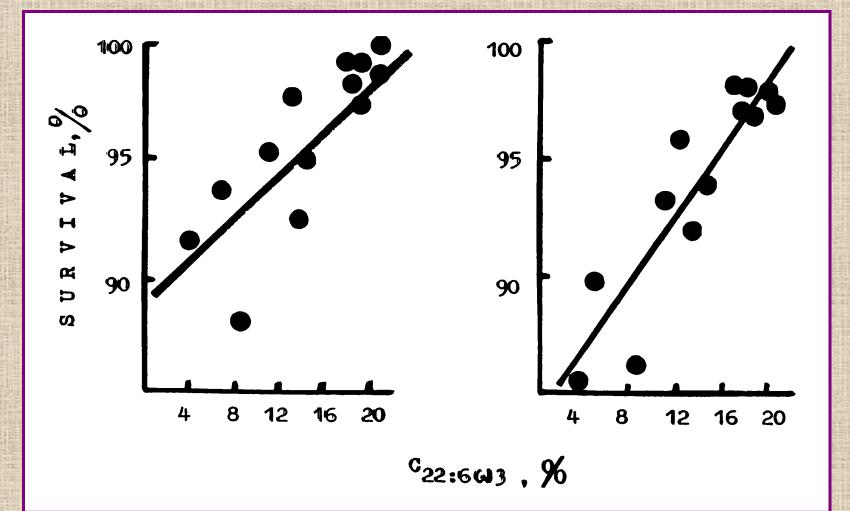
(Yuneva et al., 1990)


Dynamics of DNA, EPA and total polyunsaturated fatty acids (∑PUFA) in phospholipids of the Black sea sprat during annual cycle (Yuneva et al., 1990)

Iodine value (a measure of unsaturation) in the liver lipids of different species of goby from the Sea of Azov (Shulman and Love, 1999; Shulman, 2014)

Species	males	females
Neogobius syrman	81.7	80.7
Neogobius melanostomus	128.8	113.7
Neogobius fluviatilis	153.7	145.0
Neogobius rattan	160.0	
Mesogobius batrachocephalus	160.0	169.0

Spawning relationships in Oncorhinchus gorbuscha (Yuneva et al., 1987)

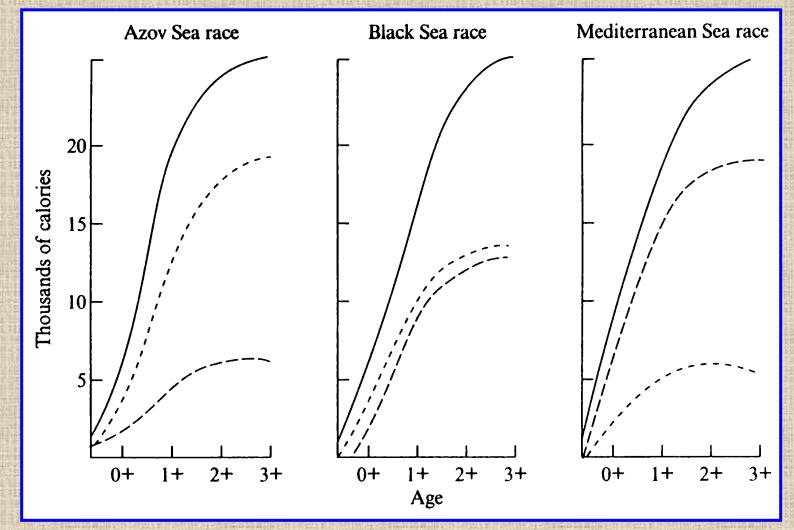


Docosohexaenoic acid (DHA) content of the eye lipids of saury-pike (Shulman, Love, 1999, the data of T.V.Yuneva)

	Rate of photoreaction			
	I	II	III	IV
DHA in phospholipids (%)	38.5	37.6	43.5	45.9
DHA in triacyl-glycerols (%)	6.3	6.2	15.1	15.1

Relationship between (a) egg and (b) larval survival and 22:6 n-3 content in Oncorhychus gorbuscha famales

(Yuneva et al., 1990)


DHA (C22:6 n- 3) content in phospholipids of two Anchovy subspecies in feeding period, November--December (Yuneva et al., 2011)

Black Sea		Black Sea anchovy		anchovy
Years	mg/100 g wet tissue	% of total fatty acids	mg/100 g wet tissue	% of total fatty acids
2005	234	13.2 ± 1.6	-	-
2006	188	11.3 ± 2.3	161	7.5 ± 1.7
2007	269	7.9 ± 0.5	-	-
2008	238	9.7 ± 0.4	151	6.8 ± 1.3

The races (subspecies) of anchovy:

Engraulis encrasicolis maeoticus; E.e. ponticus and E.e.mediterraneus. (protein, fat, total energy equivalent)

(Shulman, 1974)

