

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РЫБНОГО ХОЗЯЙСТВА И ОКЕАНОГРАФИИ»

107140, Москва, В. Красносельская, 17 Телефоны: (499) 264 93 87, (499) 264 95 43 Канцелярия: (499) 264 94 87 Телефакс: (499) 264 91 87 Телетай: 113211, Москва, Гринда Е-mail: vniro@vniro.ru

ФГУП «ВНИРО»

ИНН 7708033165, КПП 770801001, р/с 40502810038070100015, в Московском банке Сбербанка России ОАО г. Москва, к/с 3010181040000000225 БИК 044525225 Сбербанк России ОАО г. Москва Коды: ОКПО 00472124, ОКОНХ 95120, 92200, 84200 ОКТМО 45378000, ОГРН 1027700073026

«Утверждаю» Іпректор ФГУП «ВНИРО» М.К.Глубоковский

Программа вступительных испытаний в аспирантуру

По направлению подготовки 06.06.01 «Биологические науки» Научная специальность 03.02.10 «Гидробиология»

ПРОГРАММА

вступительного испытания по специальности

03.02.10 «Гидробиология»

Ввеление

В основу настоящей программы положены следующие разделы: гидробиология как наука о надорганизменных водных системах; важнейшие факторы внешней среды и реакция на них организмов (проблемы аутоэкологии); структурные характеристики биотической компоненты экосистемы; функциональные характеристики сообществ; формирование, развитие и устойчивость экосистем; накопление и разрушение (минерализация) органического вещества в экосистеме; проблемы частной гидробиологии; проблемы прикладной гидробиологии.

Программа разработана экспертным советом Высшей аттестационной комиссии по биологическим наукам.

1. Гидробиология как наука о надорганизменных водных системах

Место гидробиологии в системе биологических наук. Предмет гидробиологии. Цели и задачи. Основные научные направления и подходы к изучению объекта (описательный, количественный системный). Научные школы в отечественной гидробиология (Зернов, Скадовский, Зенкевич, Ивлев).

Понятие о системном подходе. Система и слагающие ее элементы. Понятие об организации систем и особенностях структуры. Изолированные, закрытые и открытые системы. Биологические системы. Системы с активным и пассивным управлением.

Биосфера и ее расчленение на биогеографические регионы. Биогеографический регион как крупномасштабная экосистема. Структура биогеографического региона – локальные биоценозы. Соотношение понятий: биоценоз Мебиуса, биотоп Даля, биогеоценоз Сукачева, экосистема Тэнсли и Эванса. Составные части экосистемы, ее абиотическая и биотическая компоненты. Популяция и трофическая группировка как основные подсистемы биотической компоненты экосистемы. Подходы к изучению водного биоценоза: флоро-фаунистический, биотопический, трофический. Границы биоценозов (дискретность и непрерывность биоценозов). Понятие об экотоне. Энергетически зависимые и независимые сообщества.

Круговорот веществ в экосистемах. Живое вещество, его накопление, состав. Масштабы этого процесса в гидросфере и учение о биосфере В.И. Вернадского. Биогеохимические циклы основных элементов живого вещества: углерода, азота, фосфора, кремния. Синтез и распад органического вещества в гидросфере.

Методы исследования водных экосистем. Задача количественной оценки взаимодействия элементов в системе. Однофакторный и многофакторный эксперимент при получении моделей описания связей в экосистемах с помощью регрессионного анализа в экологических исследованиях. Моделирование как специфический подход в изучении и описании экосистем. Типы моделей., прогностические свойства моделей.

2. Важнейшие факторы внешней среды и реакция на них организмов (проблемы аутоэкологии)

Свет как фактор, регулирующий условия существования и поведения гидробионтов. Фотосинтез растений, связь освещенности с фотосинтезом. Понятие компенсационной точки фотосинтеза. Эффективность использования световой энергии. Фототаксис животных. Адаптация гидробионтов к изменению интенсивности освещения и спектральному составу. Вертикальные миграции гидробионтов.

Температура как фактор, регулирующий жизнедеятельность гидробионтов. Коэффициент Вант-Гоффа и температурная кривая Крога. Температура и распространение организмов. Стено- и эвритермные организмы. Тепловодные и холодноводные организмы. Пойкилотермные и гомойотермные организмы. Сезонная динамика температуры. Термоклин.

Соленость как фактор, определяющий распространение гидробионтов. Адаптации гидробионтов к изменению солености. Осморегуляция и понятие критической солености. Эври- и стеногалинные организмы.

Газовый режим. Растворенный кислород и углекислота. Особенности дыхания гидробионтов в воде. Сероводород, его образование и окисление.

Связь между содержанием кислорода, температурой и фотосинтезом. Суточные и сезонные колебания кислорода.

Активная реакция среды, Eh, pH в воде и грунтах. Понятие об окислительновосстановительном потенциале и его влиянии на процессы, связанные с жизнью и активностью гидробионтов.

Гидростатическое давление и его влияние на вертикальное распределение и биологические особенности организмов.

Вода как среда обитания. Химический состав природных вод. Приспособления к водному образу жизни: в толще воды, на поверхности и в толще грунта, в проточных водоемах и в зоне прибоя.

3. Структурные характеристики биотической компоненты экосистемы

Структура популяций, видовая структура сообществ. Олиго- и полимиксные сообщества. Консорции как реальная единица структуры биоценоза (В. Н. Беклемишев, Л. Г. Раменский). Методы количественной оценки структуры (биомасса, число видов, разнообразие связей). Показатели разнообразия и сходства. Урони видового разнообразия. Доминирующие формы, ключевые виды и виды - эдификаторы. Относительное обилие популяций как показатель структуры сообщества. Модели относительного обилия, их ограничения.

Трофическая структура сообществ. Понятие о трофическом уровне и трофической группировке. Продуценты, консументы, редуценты.

Отношения организмов в пределах одной трофической группы. Пищевая конкуренция. Принцип Гаузе, его ограничения. Парадокс планктона.

Отношения организмов различных трофических группировок. Взаимодействия типа хищник — жертва. Опыты Гаузе и математические модели Лотки и Вольтерра. Современные модели трофических отношений. Трофические цепи и сети.

Методы количественных оценок пищевых взаимоотношений организмов в сообществе. Классификация гидробионтов по типу питания. Пищевая избирательность. Рационы, усвояемость пищи.

Пространственная структура сообществ. Количественная и качественная неоднородность сообществ, типы пространственного распределения. Факторы и механизмы, обусловливающие пространственную неоднородность планктона и бентоса. Основные деления водной биоты.

Население водной толщи. Планктон и нектон. Вертикальное распределение и миграции гидробионтов. Горизонтальное распределение и активные миграции гидробионтов. Перемещение водных масс и проблема их биоиндикации.

Население границы раздела «вода—воздух». Нейстон, плейстон. Население границы раздела «вода—грунт». Инфауна и эпифауна.

Население грунтов. Инфауна и интерстициальная фауна. Механизмы экспатриации (выноса), миграции и интродукции гидробионтов и проблема перестройки биоценозов. Акклиматизация гидробионтов.

Понятие экологической ниши. Трофический и пространственный аспекты. Фундаментальная ниша Д. Э. Хатчисона. Потенциальная и реализованная ниша. Закономерности нишевой структуры сообществ.

4. Функциональные характеристики сообществ

Представления о продукции как о важнейшей функциональной характеристике сообществ. Основные понятия — первичная, вторичная и конечная продукция. Удельная продукция (П/Б- коэффициент). Вопросы терминологии (продукция, продуктивность). Выражение продукции в единицах энергии и единицах массы.

Первичная продукция. Фотосинтез и хемосинтез. Валовая и чистая продукция. Особенности процессов создания первичной продукции в наземных и водных системах. Первичная продукция морей, океанов и континентальных водоемов (масштаб и пространственно-временная гетерогенность). Эффективность утилизации солнечной энергии. Световые и темновые реакции фотосинтеза. Связь фотосинтетической активности с факторами среды (свет, минеральное питание, температура, структура водных масс). Фотическая зона: компенсационная и критическая глубины. Методы определения первичной продукции (скляночные методы, по хлорофиллу, по изменению содержания кислорода в фотической зоне, флуоресцентные методы и др.). Чувствительность методов, достоинства и недостатки.

Бактериальная продукция. Численность и биомасса, методы расчета бактериальной продукции. Прямое микроскопирование, содержание АТФ, скорость размножения (время генерации), радиоуглеродные и тимидиновый методы. Бактериальная продукция водной толщи, осадков и обрастании в морях и континентальных водоемах.

Продукция консументов (так называемая «вторичная» продукция). Фитофаги и зоофаги. Методы определения продукции популяций без постоянного пополнения (метод П. Бойсен-Иенсена и его модификации). Расчет продукции популяций с постоянным пополнением (графический, «физиологический» методы расчета). Радиоуглеродные методы. Определение продукции эксплуатируемых популяций по данным промысловой статистики и учета пополнения. Трофические коэффициенты — К₁, К₂. Оценка продукции различных групп консументов в региональном аспекте.

Деструкция органического вещества. Основные представления о прижизненном распаде органического вещества. Дыхание и пищеварение как основные функциональные механизмы разрушения органического вещества живым организмом. Их количественная оценка. Связь между интенсивностью обмена и весом тела, методы оценки. Активный, пассивный и стандартный обмен. Уравнение Берталанфи.

5. Формирование, развитие и устойчивость экосистемы

Понятие сукцессии как процесса развития экосистемы. Первичная и вторичная сукцессии, их характерные особенности. Движущие силы и направление сукцессии. Зрелость экосистем и концепция климакса.

Виды сукцессии. Исторические сукцессии и эволюция экосистем. Циклические сукцессии. Сезонные сукцессии и биологические сезоны. Пространственно-динамический

аспект развития сообществ пелагиали. Нарушения и восстановительные сукцессии (естественные и антропогенные).

Устойчивость природных экосистем. Различные способы ее оценки. Устойчивость по Ляпунову. Эмпирические подходы. Устойчивость, стабильность и сложность. Гомеостаз системы как основной механизм поддержания устойчивости.

Устойчивость экосистем к антропогенному воздействию и концепция предельно допустимого воздействия (ПДВ).

6. Накопление и разрушение (минерализация) органического вещества в экосистеме

Формы существования органического вещества в экосистеме — живое, детрит, взвешенное, растворенное. Количественное соотношение между ними в водной толще и грунтах, пути взаимных переходов. Пищевая доступность органического вещества. Развитие представлений о важности растворенного органического вещества для существования и интеграции водных сообществ. Экологический метаболизм.

Накопление органического вещества в экосистемах. Автохтонное и аллохтонное органическое вещество. Соотношение между ними в экосистемах различного типа. Прижизненные выделения органического вещества растительными и животными организмами, их экологическая роль. Влияние условий внешней среды на интенсивность выделения растворенного органического вещества.

Разложение органического вещества в экосистемах. Прямое химическое окисление органических веществ. Стойкое и нестойкое органическое вещество. Водный гумус. Ферментативный распад, связанный с активностью гидробионтов. Экзоферменты.

Разложение органического вещества при дыхания и переваривании пища. Связь интенсивности разложения с концентрацией пиши (величиной рациона). Включение в рационы гидробионтов живого вещества, детрита и растворенного органического вещества.

Разложение мертвого органического вещества сапрофитными формами жизни. Роль бактерий, грибов и простейших в экосистеме. Мусорщики и сапрофаги.

Понятие баланса органического вещества в экосистеме. Методы расчета. Пирамида биомасс. Поток энергии через экосистему. Эффективность использования энергии организмами различных трофических уровней. Энергетическая пирамида. Понятие о типах пищевых цепей (пастбищный и детритный), их особенности в разных типах экосистем. Поток энергии через систему по цепи хищник — жертва и по детритной цепи. Понятие «микробной петли». Сравнение эффективности использования энергии в системах разного типа. Невозможность оценки метаболических связей в сообществах в рамках энергетического подхода.

Сбалансированность процессов накопления и потребления органического вещества в трофической цепи. Степень удовлетворения пищевых потребностей. Напряженность трофических связей.

7. Проблемы частной гидробиологии (типология водоемов)

Классификация водоёмов: океаны и моря, озера и водотоки, водохранилища и пруда. Вертикальная экологическая зональность водоемов, основные черты ее структуры: бенталь моря и океана— супралитораль, литораль, сублитораль (зона шельфа), батиаль (материковый склон), абиссаль (ложе океана), ультраабиссаль (глубоководные желоба). Соответствующие подразделения в пелагиали — эпипелагиаль, мезопелагиаль, батипелагиаль, абиссапелагиаль. Климатическая зональность водоемов — арктическая, бореальная, тропическая, нотальная и антарктическая зоны.

Важнейшие абиотические характеристики водоемов.

Соленость. Классификация водоемов по содержанию соли в воде и фаунистический состав. Соленость и пространственное распределение гидробионтов.

Свет. Солнечная радиация и закономерности распространения света в водной среде. Цветность воды.

Температура. Температурная стратификация, ее сезонная и широтная, изменчивость. Термоклин. Эпилимнион и гиполимнион в озерах. Прямая и обратная температурная стратификация. Типы озер по термическому режиму (тропические, умеренные и полярные). Роль термоклина в существовании сообществ эпипелагиали океана, его «проницаемость» для мигрирующих интерзональных видов.

Особенности термического и солевого режима. ТС- кривые как индикаторы водных масс. Пикноклин как нижняя граница биотопа фитопланктона в пелагиали.

Водные массы. Течения. Общая схема циркуляции вод в океане. Основные конвергенции и дивергенции. Перемешивание водных масс. Турбулентность. Конвекция и адвекция. Приливно-отливные явления. Ветровое перемешивание. Голомиктические и меромиктические озера (по Хатчисону).

Важнейшие биотические характеристики водоемов.

Трофность. Биологическая классификация водоемов: эвтрофные, олиготрофные, мезотрофные, дистрофные.

Продуктивность. Основные представления о продуктивности как важнейшей характеристики водоема. Конечная продукция. Соотношение между первичной и конечной продукциями. Продуктивность водоемов различной трофности. Продуктивные районы морей и океанов, их характеристика. Зависимость продуктивности донных сообществ от продуктивности фотической зоны. Потенциальная продуктивность водоемов и биологические ресурсы океана.

8. Проблемы частной гидробиологии (особенности пространственной и трофической структуры основных природных экосистем)

8.1. Моря и океаны.

Концепция биологической структуры океана. Общие закономерности пространственного распределения жизни в Мировом океане.

Пелагиаль. Фитопланктон. Видовое разнообразие. Закономерности пространственного распределения, сезонной динамики фитопланктона и факторы, их определяющие. Зоопланктон. Видовое разнообразие. Закономерности пространственного распределения, сезонной динамики зоопланктона и факторы, их определяющие. Суточные, онтогенетические и сезонные вертикальные миграции. Биогеографическое районирование пелагиали океана.

Ихтиофауна. Рыбы эпипелагиали, мезопелагиали, глубоководные и придонные. Комплекс неритических видов. Систематический состав и закономерности географического распространения. Роль в трофических цепях пелагиали.

Пелагические сообщества, их структурно-функциональные характеристики. Глубоководные сообщества. Сообщества тропиков, умеренных и полярных районов северного и южного полушарий.

Бенталь. Количественное распределение донного населения в Мировом океане и факторы, его определяющие. Методы количественной оценки. Фитобентос, видовой состав, вертикальная структура и географическая зональность. Зообентос, видовой состав мелководного и глубоководного бентоса. Микро-, мейо- и макробентос. Основные факторы, влияющие на распределение и состав донной фауны. Донная фауна как пищевая база бентосноядных рыб.

Биогеографическое районирование донной фауны Мирового океана. Донные сообщества литорали, коралловых рифов, шельфа, глубин океана.

Сообщества обрастаний — перифитон. Видовое разнообразие. Закономерности пространственного распределения, сезонной динамики и факторы, их определяющие.

8.2. Экосистемы континентальных водоемов.

Реки. Масштаб перемещения в Мировой океан речными водами растворенных и взвешенных веществ. Биосток. Условия жизни (турбулентное перемешивание водных масс и выравнивание гидрологических градиентов).

Реопланктон. Доминирующие группы планктона.

Бентос. Лито-, аргилло-, пелореофильные формы. Биогидрологические профили. Перифитон. Растения -эдификаторы н полночленность консорций. Нектон. Проходные и полупроходные рыбы.

Озера. Сточные и бессточные. Конвективное и ветровое перемешивание. Пресные, солоноватые, соленые и гиперсоленные озера. Лиманы. Лимнобионты (планктон, бентос, макрофиты, перифитон). Доминирующие формы. Сезонные явления, особенности вертикального распределения. Ихтиофауна, озерные, озерно-речные и проходные рыбы.

Болота. Гидрологический и гидрохимический режимы. Основные представители флоры и фауны.

Водохранилища. Особенности гидрологического режима. Колебания уровня и осушная зона. Состав населения. Основные черты сообществ пелагиали и бентали. Стадии формирование экосистем водохранилищ. Проблема эвтрофикации, "цветение" водохранилищ.

Пруды. Плотинные, копаные и наливные. Видовое разнообразие сообществ и продуктивность прудов. Рыбоводство, прудовое хозяйство, особенности нерестовых, выростных и зимовальных прудов.

Каналы. Особенности гидрологического режима. Особенности формирования флоры и фауны. Межбассейновые миграции.

Литература

Моисеев П.А. Биологические ресурсы Мирового океана. М.: Издательство ВНИРО, 2012. 374 с.

Никольский Г.В. Избранные труды в 3-х томах. Т. 2. Экология рыб. М.: Изд-во ВНИРО, 2013.464 с.

Дополнительная литература

Биология океана. Под ред. М.Е. Виноградова, в 2-х томах. М.: Наука.

Одум Ю. Основы экологии. М., 1975 г.

Романенко В.И., Кузнецов С.И. Экология микроорганизмов пресных водоёмов. Л.: Наука, 1974 г.

Федоров В.Д, Гильманов Т.Г. Экология. М.: изд-во МГУ, 1980 г.

Graham L.E., Wilcox L.W. Algae. Prentice-Hall, Inc. N-Y, 2000.

Бурковский И.В. Структурно-функциональная организация и устойчивость морских донных сообществ. М.: МГУ, 1992 г.

Заика В.Е. Удельная продукция водных беспозвоночных. Киев, 1972 г.

Монаков А.В. Питание пресноводных беспозвоночных. М.: РАН, 1998 г.

Оуэн О.С. Охрана природных ресурсов. М., 1977 г.

Меншуткин В.В. Математическое моделирование популяций и сообществ водных животных. Л., 1971 г.

Разумовский С.К. Избранные труды. М.: КМК Scientific Press, 1999 г.

Саут Р., Уиттик А. Основы альгологии. М.: Мир, 1990 г.

Falkowski P.G., Raven J.A. Aquatic photosynthesis. Malden, Massachusetts: Blackwell Science, 1997. 375 p.